bbabanner.jpg

In-Silico targeting of SARS-CoV-2 NSP6 for drug and natural products repurposing

Non-Structural Protein 6 (NSP6) has a protecting role for SARS-CoV-2 replication by inhibiting the expansion of autophagosomes inside the cell. NSP6 is involved in the endoplasmic reticulum stress response by binding to Sigma receptor 1 (SR1). Nevertheless, NSP6 crystal structure is not solved yet. Therefore, NSP6 is considered a challenging target in Structure-Based Drug Discovery. Herein, we utilized the high quality NSP6 model built by AlphaFold in our study. Targeting a putative NSP6 binding site is believed to inhibit the SR1-NSP6 protein-protein interactions. Three databases were

Artificial Intelligence
Healthcare
Energy and Water
Circuit Theory and Applications
Software and Communications

Clay chips and beads capture in situ barley root microbiota and facilitate in vitro long-term preservation of microbial strains

Capturing the diverse microbiota from healthy and/or stress resilient plants for further preservation and transfer to unproductive and pathogen overloaded soils, might be a tool to restore disturbed plant-microbe interactions. Here, we introduce Aswan Pink Clay as a low-cost technology for capturing and storing the living root microbiota. Clay chips were incorporated into the growth milieu of barley plants and developed under gnotobiotic conditions, to capture and host the rhizospheric microbiota. Afterward, it was tested by both a culture-independent (16S rRNA gene metabarcoding) and

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications
Agriculture and Crops

Multi-omics data integration and analysis pipeline for precision medicine: Systematic review

Precision medicine has gained considerable popularity since the “one-size-fits-all” approach did not seem very effective or reflective of the complexity of the human body. Subsequently, since single-omics does not reflect the complexity of the human body's inner workings, it did not result in the expected advancement in the medical field. Therefore, the multi-omics approach has emerged. The multi-omics approach involves integrating data from different omics technologies, such as DNA sequencing, RNA sequencing, mass spectrometry, and others, using computational methods and then analyzing the

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications

New antileishmanial quinoline linked isatin derivatives targeting DHFR-TS and PTR1: Design, synthesis, and molecular modeling studies

In a search for new drug candidates for one of the neglected tropical diseases, leishmaniasis, twenty quinoline-isatin hybrids were synthesized and tested for their in vitro antileishmanial activity against Leishmania major strain. All the synthesized compounds showed promising in vitro activity against the promastigote form in a low micromolar range (IC50 = 0.5084–5.9486 μM) superior to the reference miltefosine (IC50 = 7.8976 μM). All the target compounds were then tested against the intracellular amastigote form and showed promising inhibition effects (IC50 = 0.60442–8.2948 μM versus 8.08

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Mechanical Design

Automatic Detection of Some Tajweed Rules

correct understanding of the Holy Quran is an essential duty for all Muslims. Tajweed rules guide the reciter to perform Holy Quran reading exactly as it was uttered by Prophet Muhammad peace be upon him. This work focused on the recognition of one Quranic recitation rule. Qalqalah rule is applied to five letters of the Arabic Alphabet (Baa/Daal/Jeem/Qaaf/Taa) having sukun vowelization. The proposed system used the Mel Frequency Cepstral Coefficients (MFCC) as the feature extraction technique, and the Convolutional Neural Networks (CNN) model was used for recognition. The available dataset

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications

Efficient Pipeline for Rapid Detection of Catheters and Tubes in Chest Radiographs

Catheters are life support devices. Human expertise is often required for the analysis of X-rays in order to achieve the best positioning without misplacement complications. Many hospitals in underprivileged regions around the world lack the sufficient radiology expertise to frequently process X-rays for patients with catheters and tubes. This deficiency may lead to infections, thrombosis, and bleeding due to misplacement of catheters. In the last 2 decades, deep learning has provided solutions to various problems including medical imaging challenges. So instead of depending solely on

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications

A hybrid deep learning approach for COVID-19 detection based on genomic image processing techniques

The coronavirus disease 2019 (COVID-19) pandemic has been spreading quickly, threatening the public health system. Consequently, positive COVID-19 cases must be rapidly detected and treated. Automatic detection systems are essential for controlling the COVID-19 pandemic. Molecular techniques and medical imaging scans are among the most effective approaches for detecting COVID-19. Although these approaches are crucial for controlling the COVID-19 pandemic, they have certain limitations. This study proposes an effective hybrid approach based on genomic image processing (GIP) techniques to

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications

Transcriptomic marker screening for evaluating the mortality rate of pediatric sepsis based on Henry gas solubility optimization

Sepsis is a potentially life-threatening medical condition that increases mortality in pediatric populations admitted in the intensive care unit (ICU). Due to the unpredictable nature of the disease course, it was challenging to find the informative genetic biomarkers at the earliest stages. Consequently, a considerable attention has been paid for the early prediction of pediatric sepsis based on genetic biomarkers analysis that would promote the early medical intervention. Therefore, the proposed study attempted to demonstrate the feasibility of Henry Gas Solubility Optimization (HGSO) in

Artificial Intelligence
Healthcare
Circuit Theory and Applications

A comparative study for nuclei segmentation using latest deep learning optimizers

Nuclei segmentation is a critical task in biological image analysis, with numerous applications in cancer diagnosis, grading, staging, and treatment planning. However, this task is challenging, particularly when dealing with low-resolution and low signal-to-noise ratio microscopy images. Segmentation problems arise, such as touching and missing cells, which make the process even more challenging. Deep learning models, including Attention U-Net and TransUNet, have demonstrated exceptional performance in medical image segmentation. Nonetheless, the choice of optimizer can significantly impact

Artificial Intelligence
Healthcare
Circuit Theory and Applications
Software and Communications

Pharmacotherapy of PD and related movements disorders and their limitations

A wide range of neurodegenerative illnesses, including Parkinson's disease (PD) and related movement disorders, greatly impair the quality of life for those who are afflicted. This chapter provides a comprehensive overview of Parkinson's disease (PD), covering everything from the disease's basic definitions, epidemiology, and pathophysiology to the complex issues involved in treating its symptoms with medication and other approaches. It emphasizes the significance of adjunct therapies and a multidisciplinary approach in comprehensive care, as well as the crucial role that personalized medicine

Healthcare