Breadcrumb
A Multi-scale Self-supervision Method for Improving Cell Nuclei Segmentation in Pathological Tissues
Nuclei detection and segmentation in histopathological images is a prerequisite step for quantitative analysis including morphological shape and size to help in identifying cancer prognosis. Digital pathology field aims to improve the quality of cancer diagnosis and has helped pathologists to reduce their efforts and time. Different deep learning architectures are widely used recently in Digital pathology field, yielding promising results in different problems. However, Deep convolutional neural networks (CNNs) need a large subset of labelled data that are not easily available all the time in
Lung Segmentation Using ResUnet++ Powered by Variational Auto Encoder-Based Enhancement in Chest X-ray Images
X-ray has a huge popularity around the world. This is due to its low cost and easy to access. Most of lung diseases are diagnosed using Chest X-ray (CXR). So, developing computer aided detection (CAD) provided with automatic lung segmentation can improve the efficiency of the detection and support the physicians to make a reliable decision at early stages. But when the input image has image artifacts, then any lung segmentation model will introduce suboptimal lung segmentation results. In this paper, a new approach is proposed to make the lung segmentation model robust and boost the basic
Downlink Throughput Prediction in LTE Cellular Networks Using Time Series Forecasting
Long-Term Evolution (LTE) cellular networks have transformed the mobile business, as users increasingly require various network services such as video streaming, online gaming, and video conferencing. A network planning approach is required for network services to meet user expectations and meet their needs. The User DownLink (UE DL) throughput is considered the most effective Key Performance Indicator (KPI) for measuring the user experience. As a result, the forecast of UE DL throughput is essential in network dimensioning for the network planning team throughout the network design stage. The
Deep Learning for ECG Image Analysis: A Lightweight Approach for Covid-19 Diagnosis
Since late 2019, Covid-19 has broken out causing immense pressure on healthcare systems worldwide. Fast detection of Covid-19 has become crucial in controlling and slow-pacing the virus outbreak. Innovative methods that are cheap, fast, and accurate for Covid-19 detection are of high importance to aid in the efforts of containment of the disease. In this study a novel method is proposed for Covid-19 detection through analysis of ECG image records. Three models are introduced for three classification schemas, Normal vs Covid-19, Covid-19 vs non Covid-19, Normal vs Covid-19 vs Abnormal HeartBeat
Does Deep Learning Require Image Registration for Early Prediction of Alzheimer’s Disease? A Comparative Study Using ADNI Database
Image registration is the process of using a reference image to map the input images to match the corresponding images based on certain features. It has the ability to assist the physicians in the diagnosis and following up on the patient’s condition. One of the main challenges of the registration is that it takes a huge time to be computationally efficient, accurate, and robust as it can be framed as an optimization problem. In this paper, we introduce a comparative study to investigate the influence of the registration step exclusion from the preprocessing pipeline and study the counter
Efficient Semantic Segmentation of Nuclei in Histopathology Images Using Segformer
Segmentation of nuclei in histopathology images with high accuracy is crucial for the diagnosis and prognosis of cancer and other diseases. Using Artificial Intelligence (AI) in the segmentation process enables pathologists to identify and study the unique properties of individual cells, which can reveal important information about the disease, its stage, and the best treatment approach. By using AI-powered automatic segmentation, this process can be significantly improved in terms of efficiency and accuracy, resulting in faster and more precise diagnoses. Ultimately, this can potentially lead
Emotion Recognition System for Arabic Speech: Case Study Egyptian Accent
Speech Emotion Recognition (SER) systems are widely regarded as essential human-computer interface applications. Extracting emotional content from voice signals enhances the communication between humans and machines. Despite the rapid advancement of Speech Emotion Recognition systems for several languages, there is still a gap in SER research for the Arabic language. The goal of this research is to build an Arabic-based SER system using a feature set that has both high performance and low computational cost. Two novel feature sets were created using a mix of spectral and prosodic features
Ambulance Routing Optimization for CT-Ready Hospitals
This paper aims to enhance emergency medical services by optimizing ambulance routes towards hospitals equipped for spiral CT scans with minimal wait times. It integrates real-time data on hospital availability and traffic conditions, utilizing machine learning and smart routing algorithms to predict traffic jams and determine the fastest routes. Additionally, a machine learning model is used to detect the risk level of patients based on reported symptoms, helping prioritize critical cases. It aims to reduce emergency response times, ensuring quicker patient treatment. Preliminary results show
DAP: A Framework for Driver Attention Prediction
Human drivers employ their attentional systems during driving to focus on critical items and make judgments. Because gaze data can indicate human attention, collecting and analyzing gaze data has emerged in recent years to improve autonomous driving technologies. In safety-critical situations, it is important to predict not only where the driver focuses his attention but also on which objects. In this work, we propose DAP, a novel framework for driver attention prediction that bridges the attention prediction gap between pixels and objects. The DAP Framework is evaluated on the Berkeley
Speech Emotion Recognition System for Arabic Speakers
The Speech Emotion Recognition (SER) system is one of the essential human-computer interface applications. Despite the rapid advancement of technology, there is still a gap in SER research in the Arabic language corpus. The goal of this research is to build an Arabic-based SER based on a feature set that has both high performance and low computational cost. Two novel feature sets were implemented using a mix of spectral and prosodic features. An Arabic semi-natural corpus 'EYASE' was adopted for testing the proposed system. Five machine learning classifiers using the different feature sets
Pagination
- Previous page ‹‹
- Page 7
- Next page ››